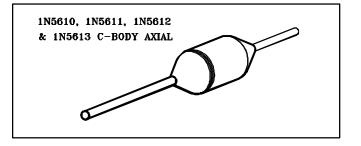


580 Pleasant St. Watertown, MA 02472 PH: (617) 926-0404 FAX: (617) 924-1235

Features

- 1500 Watts for 1 ms Pulse Power Capability
- Small Physical Size
- Designed for MIL-STD-704A Applications


1N5610 1N5611 1N5612, 1N5613

POWER ZENER RECTIFIER JAN, JANTX, JANTXV

Description

Zener diodes with a high surge capability qualified to MIL-S-19500/434

Absolute Maximum Ratings (@ 25°C unless noted)

-	<u>1N5610</u>	<u>1N5611</u>	<u>1N5612</u>	
Forward Surge Current,	200 A	200 A	200 A	
Zener Surge Current, @ 25C	32.0 A	24.0 A	19.0 A	
Zener Surge Current @ 150C	5.5 A	4.8 A	3.2 A	
Storage and Operating Temperature	-65C to + 175C			
Zener Voltage	See Electrical Characteristics			
Surge Power	See Graphs			

Electrical Characteristics (T = 25°C unless otherwise noted)

DEVICE TYPE	Min. Zener Voltage δ Vz @ 1Ma	Max. Zener Voltage λ Vz @ Is		MAX. Reverse Leakage Current I _R @ V _R		MAX. Forward V ξ @ 100 A	Typical Temp. Coefficient
	Volts	Volts	Amps	μA	Volts	Volts	%/°C
1N5610*	33.0	47.5	32.0	5.0	30.5	4.8	.093
1N5611*	43.7	63.5	24.0	5.0	40.3	4.8	.094
1N5612*	54.0	78.5	19.0	5.0	49.0	4.8	.096
1N5613*	191	265	5.7	5.0	175	4.8	.100

NOTES: * Available as JAN, JANTX and JANTXV

- $\delta\,$ Duration of applied current ${\leq}300$ ms, Duty cycle ${\leq}2\%.$
- λ Use a pulse which decays exponentially to 50 % of peak value during 1 ms. (See " Pulse Waveform " graph).
- ξ Peak Sinusoidal surge current of 8.3 ms duration, non repetitive

<u>1N5613</u> 200 A 5.7 A 1.0 A

Applications

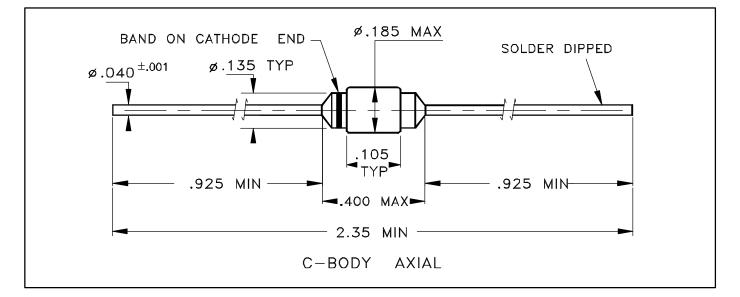
Voltage transients can be suppressed with series elements, shunt elements or a combination of both. These elements may be passive or active. For low & medium power applications, a series resistor & zener clamp offer several attractive features:

- 1. Simplicity of design.
- 2. High reliability.
- 3. Fast response time.

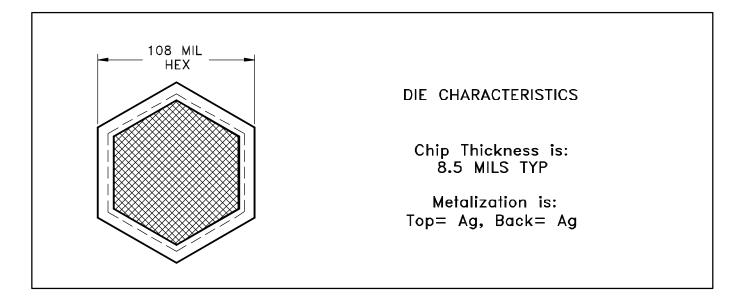
The 1N5610 series will suppress the following transients (defined by MIL-S-704A) without using any series limiting resistance; (except as noted in line #3 below)

- 1. All 600 V transients (category 1 in chart below).
- 2. All 80 V transients except those generated by the main voltage regulator (category 2 in chart below).
- 3. Over-voltage transients from the main voltage regulator (category 3 in chart below) will be suppressed if:
- a. A 20 ohm series limiting resistor is used, or-
- b. No series resistance is used & the zener is protected within 500 μ s, using (for example) an SCR crowbar.

The above statements are based on the source impedances & dv/dt characteristics as given in ARINC* spec# 413; entitled "Guidance for Aircraft Electrical Power Utilization & Transient Protection. This report further defines MIL-STD-704A in regard to large aircraft electrical systems.


These surge suppressors are useful in a varierty of other applications where semiconductor devices must function in an environment subject to extremely high, but short term surges.

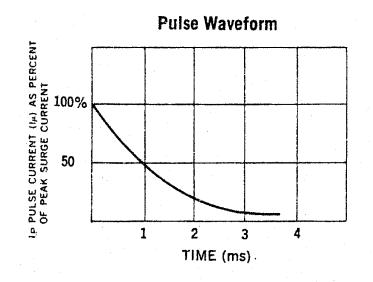
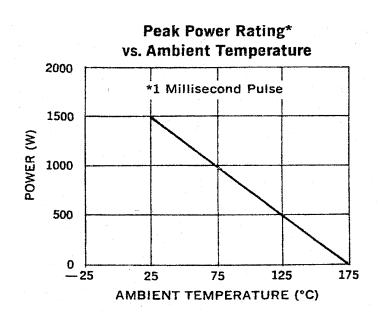
* ARINC stands for Aeronautical Radio Incorporated; Annapolis, Maryland 21401


Cate- gory #	Source of Trans.	Max. Ampli- tude	Duration of Trans.	Min. Imped- ance	dv over dt
1	Induc- tive Swtchg	600 V	≤10 µs	50 ohm	
2	BUS Switch- ing	80 V	≤10 ms	15 ohm	
3	Main Volt. Reg.	80 V	≥10 ms	0.2 ohm	50V/ms

1N5610 1N5611 1N5612, 1N5613

DIE OUTLINE

1N5610 1N5611 1N5612, 1N5613

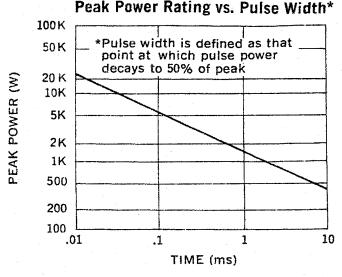

FIGURE 1

FIGURE 2

1N5610 1N5611 1N5612, 1N5613

Peak Power Rating vs. Pulse Width*

FIGURE 3